Networking Issues in UWSNs

Jun-Hong Cui

http://ubinet.engr.uconn.edu

CSE, UCONN
Research Challenges

- **UnderWater Acoustic (UW-A) channel:**
 - Narrow band: hundreds of kHz at most
 - Huge propagation latency

- Random topology and sensor node mobility (1--1.5m/s due to water current)
 - Existing protocols in terrestrial sensor networks assume stationary sensor nodes;
 - In mobile sensor networks, these protocols weakened

- **Mobility & UW-A channel limitations** open the door to very challenging networking issues
UWSN Protocol Stack

- UWSNs must require:
 - Reliable data transfer (tolerating high error-prone acoustic channels)
 - Efficient data delivery (should be energy-efficient)
 - Localization (for geo-routing or meaningful data)
 - Time synchronization (for sleep cycle schedule, multiple access protocol schedule, etc)
 - Efficient multiple access (sensors are densely deployed)

- Some UWSNs operate in a hostile environment (e.g., submarine warfare, coastal protection etc)
 - Must be protected from attacks
 - Must be tolerate network disconnection

- Objective: build efficient, reliable, robust, & secure UWSNs
Secure and Robust Data Delivery

- Consider various attacks
 - Packet delivery vulnerable to wormhole attacks (i.e., traffic jammer)
 - regardless whether static or moving
 - Under water, wormhole attacks are lethal because of large acoustic prop delays
 - due to slow speed of sound

- In case of network disconnection
 - Store data locally and temporarily
 - Re-disseminate data when connected
Reliable Data Transfer

- TCP like end-to-end approach does not work
 - Large propagation delay \Rightarrow large end-to-end delay \Rightarrow large bandwidth x delay product
 - High error-prone acoustic channels \Rightarrow high loss rate

- Pure ARQ type of hop-by-hop approach does not work well
 - Performance degraded because of frequent ACKs

- Possible solution: FEC-based hop-by-hop approach with infrequent ACKs
 - How to design efficient coding schemes
Efficient Multi-Hop Data Routing

- Existing routing protocols in terrestrial WSNs do not work well in UWSNs
 - Node mobility changes node neighborhood
 - *Directed diffusion* requires too frequent route enforcement

- Existing routing protocols in terrestrial ad-hoc networks do not work well in UWSNs
 - Proactive: too much overhead to maintain updated topo
 - Passive: flooding is not efficient, also causes contention

- Possible solution: location-based routing
 - VBF: vector-Based Forwarding (Networking’06)
Localization & Time-Synchronization

- GPS-free and Mobility are the Challenges
- Existing GPS-free localization & time-sync schemes (range-based & range-free)
 - nodes are usually immobile
 - multi-hop schemes usually suffer from
 - poor precision due to high error probability & dynamic network topologies
- Considering underwater GPS-like approach
 - using multiple surface reference points
- Range-based approaches are possible
 - Need dedicated devices to measure distances
Efficient Multiple Access

Sensor nodes are densely deployed

Examine existing MAC protocols
 - Scheduled protocols
 • TDMA: ?
 • CDMA: ?
 • FDMA: not feasible, too narrow band in M-UWSNs
 - Random access protocols
 • CSMA/ MACAW: RTS/CTS too much overhead
 • ALOHA/Slotted ALOHA: ?

Suggest solutions
 - A cluster architecture: CDMA between clusters, TDMA inside clusters
 - ALOHA like approach considering energy efficiency