COPE-MAC: A Contention-based Medium Access Control Protocol with Parallel Reservation for Underwater Acoustic Networks

Underwater Sensor Network (UWSN) Lab
Computer Sci. and Eng. Department
University of Connecticut
Outline

- **Overview**
- Motivations
- Previous work
- COPE-MAC
- Simulation results
- Conclusions
Underwater Sensor Networks

- Underwater Sensor Networks (UWSNs)
 - Forming sensor networks in underwater environments

- UWSN has a wide range of applications
 - Environment monitoring
 - Persistent surveillance
 - Oil/gas industry
 - Transportation
 - Fishery
 - ...
Outline

- Overview
- **Motivations**
- Previous work
- COPE-MAC
- Experiment Results
- Conclusions
Motivation

- Acoustic modems are getting faster
 - higher data rate: 80bps ~ 10kbps
 - Transmission delay is decreasing

- Long propagation delay slows down the network communication
 - Could easily go to a few seconds
 - High costs limit the number of sensor nodes
 - Distance between two nodes would be very long
 - Propagation delay will still be very long, no matter how modem technology improves
 - Old handshaking methods would be less efficient
Objectives

- Improve the efficiency of medium access control (MAC) protocol
- Increase the throughput of the underwater network
- Reduce energy overheads
Outline

- Overview
- Motivations
- **Previous work**
- COPE-MAC
- Experiment Results
- Conclusions
Typical RTS/CTS approach

- Use RTS/CTS/DATA/ACK to establish one connection
- Channel utilization

\[\eta \leq \frac{T_D}{T} \leq \frac{T_D}{T_D + 4 \times T_P} = \frac{1}{1 + 4 \times \alpha} \]

- \(T_R \): control frame delay
- \(T_D \): data frame delay
- \(T_P \): propagation delay
Limitations of previous protocol

- In UWSN, one round of RTS/CTS could be longer than DATA
- Only one connection can be established with one handshake
- Low channel utilization
- Nodes are suppressed when receiving CTS/RTS messages
- Unable to establish connections when neighbors are handshaking
Outline

- Overview
- Motivations
- Previous work
- COPE-MAC
- Experiment Results
- Conclusions
COPE-MAC Overview

- COPE-MAC:
 - COnstention based Parallel rEervation MEdium Access Control
- Based on RTS/CTS
- Parallel Reservation
- Cyber Carrier Sensing
COPE-MAC example
COPE-MAC example

B
MREV-ACK

A
MREV-ACK

C

D
MREV-ACK
COPE-MAC example
COPE-MAC example
COPE-MAC example
Parallel Reservation

- Parallel reservation
 - Schedule packet transmissions in the near future
 - Schedule packet transmissions to multiple destination

- Multicast RTS/CTS/ACKs
 - Can contain multiple source, destination addresses
 - One RTS can request for sending data to multiple neighbors at different time
 - One CTS can establish connections to different nodes
 - One ACK can acknowledge Data from multiple nodes
Cyber carrier sensing

- Carrier sensing
 - Full-duplex channel
 - Avoid collision by detecting a carrier wave
 - Example: CSMA/CD in 802.3 Ethernet
- Virtual carrier sensing
 - Half-duplex channel
 - Avoid collision by detecting control packets
 - Example: CSMA/CA in 802.11 with RTS/CTS

Cyber carrier sensing

- Half-duplex channel
- Control messages include local “schedule”
- Construct a virtual channel
 - Map neighbors’ time to “local time”
 - No propagation delay
 - Detect collision by scanning the virtual channel in “cyber space”
States of a COPE-MAC node

- **Start MREV accumulation timer**
- **App. DATA received**
- **Start MREV-ACK accumulation timer**
- **Construct MREV**
- **Construct MREV-ACK**
- **Receive DATA-ACK**
- **Receive MREV**
- **Receive MREV-ACK**
- **Start DATA-ACK accumulation timer**
- **Start Data sending timer and update REV Queues**
- **Send DATA**
- **DATA sent**
- **Data TX timeout**
- **Receive DATA-ACK**
- **Cancel the DATA retransmission Timer and delete the DATA**
- **Construct DATA-ACK**
- **DATA-ACK sent**
- **Timeout**
- **Network DATA received**
- **MREV sent**
- **Timeout**
- **DATA sent**
- **DATA TX timeout**
- **Timeout**
- **MREV sent**
- **Receive MREV-ACK**
- **MREV-ACK sent**
Outline

- Overview
- Motivations
- Previous work
- COPE-MAC
- **Experiment Results**
- Conclusions
Simulation Results

- **Simulation settings**
 - Number of nodes: 50
 - Packet arrival mode: Poisson
 - Simulation time: 1000 seconds
 - Number of runs: 100

- **Scenario I**
 - Network size: 5500 x 5500 m²
 - λ range: 0.02 to 0.24

- **Scenario II**
 - Average neighbor distance: 500 to 900 meters
 - λ is fixed at 0.1
Scenario I
Scenario II
Outline

- Overview
- Motivations
- Previous work
- COPE-MAC
- Experiment Results
- Conclusions
Conclusions

- COPE-MAC
 - Key features:
 - Parallel reservation
 - Cyber carrier sensing
 - Performance:
 - High network throughput
 - Better energy efficiency

- Future work
 - Field test with real environment
 - Study the effects of concurrency on network performance
Thanks!

Questions & Comments?