“Busy Terminal Problem” and Implications for MAC protocols in Underwater Acoustic Networks

Yibo Zhu, Jun-Hong Cui, Zheng Peng, and Zhong Zhou

UWSN Lab @ University of Connecticut
Outline

- Background
- “Busy Terminal Problem” (BTP)
- Impact of BTP
- Modeling BTP
- Simulation Results
- Conclusion
Underwater Acoustic Networks (UANs)

- Wide range of applications!
- Grand challenges!
 - Acoustic communication
 - Slow propagation speed
 - sound speed in water: $\sim 1500\text{m/s}$ vs. radio speed: 2×10^8
 - Low available bandwidth
 - acoustic: several kbps vs. radio: tens or hundreds of Mbps
 - Dynamic environment
 - Water current …
Media Access Control (MAC)

- What is Media Access Control?
 - Channel control mechanism that allows multiple nodes to communicate through a shared medium
 - Example: 802.11 (Wi-Fi)
Challenges for Underwater MAC Design

- **Slow propagation speed**
 - sound speed in water: \(~1500\text{m/s}\) vs. radio speed: \(2\times10^8\)
 - Long propagation delays

- **Low transmission rates** ➔ long transmission delays
 - acoustic: several kbps vs. radio: tens or hundreds of Mbps

Radio Networks

- node A
- node B
- node C

Carrier sense in radio networks

UANs

- node A
- node B
- node C

Carrier sense in UANs

Much higher collision probability!

Next: Acoustic modems
Motivation: behavior of acoustic modems

A practical issue: non-interruptibility of acoustic modems

Problem: How the non-interruptibility affects MAC performance?

Busy terminal problem (BTP): In half-duplex non-interruptible underwater acoustic networks, a node cannot interrupt reception/transmission to send another packet.

- Significantly severe in underwater acoustic networks because of long transmission times
How BTP Affects Underwater MAC

- Random access based MAC
 - Nodes cannot transmit at will

- Reservation based MAC
 - BTP disturbs the schedule and cause collisions
 - It is possible to avoid BTP for scheduled packets
 - Transmission does not conflict with any reception/overhearing
 - No intuitive way to avoid BTP for control packets

It is necessary to analytically study how BTP affects random access MAC (ALOHA-like approach).
ALOHA with BTP

Simulation settings:
- 500 nodes
- 5km x 5km x 3km
- Transmission range: 600m
- Transmission rate: 667bps
- Preamble length: 1.5s
- Poisson traffic rate: 0.05

It is critical to model ALOHA with BTP!

Classic model cannot capture the collision behavior in ALOHA underwater
Modeling ALOHA with BTP

Possible conflicts

- **Rx/Tx** and **Tx/Tx** conflicts at N_S

N_S: sender
N_R: receiver
N_C: a common neighbor of N_S and N_R
N_H: N_S’s a hidden terminal
N_N: N_S’s neighbor
Modeling ALOHA with BTP

- Possible conflicts

\[N_S: \text{sender} \]
\[N_R: \text{receiver} \]
\[N_C: \text{a common neighbor of } N_S \text{ and } N_R \]
\[N_H: N_S \text{'s a hidden terminal} \]
\[N_N: N_S \text{'s neighbor} \]

② Rx/Rx conflict at \(N_R \) by a hidden terminal
Modeling ALOHA with BTP

 vigorously

Possible conflicts

- N_S: sender
- N_R: receiver
- N_C: a common neighbor of N_S and N_R
- N_H: N_S’s a hidden terminal
- N_N: N_S’s neighbor

③ Rx/Rx conflict at N_R

by a common neighbor

Common neighbor caused collision!

cannot receive entire packet

Next: Collision type 4
Modeling ALOHA with BTP

Possible conflicts

- N_S: sender
- N_R: receiver
- N_C: a common neighbor of N_S and N_R
- N_H: N_S’s a hidden terminal
- N_N: N_S’s neighbor

\[\begin{align*}
 &\text{④ Tx/Rx conflict at } N_R \\
 &\text{Cannot receive when transmitting}
\end{align*}\]
Modeling Framework

- Probability of a successful transmission

\[P_s = \int_0^R 3d_{NSNR}^2 \frac{P_{ne} P_{Tx} P_{NH} P_{NC} P_{Rx} P_{RxRx} P_{RxRx} d_{NSNR}}{R^3} \]

- No channel error
- The sender can send
- No hidden terminal problem
- No collision caused by common neighbors
- The receiver can receive

Next: Model validation
Model Validation

- Simulation platform: Aqua-Sim
- Default simulation settings:
 - 500 nodes randomly deployed in 5000m x 5000m x 3000m
 - Transmission range 600m
 - BER: 1×10^{-5}
 - Packet size: 500B
 - Traffic generation rate: 0.05 pkt/s
- Teledyne Benthos modem:
 - Transmission rate: 667 bps;
 - Preamble: 1.5 s
- UCONN OFDM modem:
 - Transmission rate: 3045 bps;
 - Preamble: 0.486s
Model validation with different packet generation rates

The proposed model captures the behavior of ALOHA with BTP!
Throughput Optimization – A Case Study

- Maximize ALOHA’s nodal throughput by finding the optimal packet generation rate λ

The optimal λ obtained through the proposed model is much closer to the simulation results!
Conclusion

- Identify the busy terminal problem and theoretically analyze its impact on MAC performance
 - Based on real acoustic modem characteristics
 - Can affect the performance of underwater MAC protocols
 - New model of ALOHA with the busy terminal problem
 - Guide the future MAC design and analysis
 - A case study on throughput optimization

Future Work

- Model reservation based MAC with BTP
- Handle BTP in future MAC design
Thanks & Questions?